1. Calcule a área da base, a área lateral e a área total de cada cilindro reto.
 a) ![Cilindro a)](image)
 b) ![Cilindro b)](image)

2. A superfície lateral de um recipiente cilíndrico será produzida com a chapa de metal representada abaixo, sem que haja desperdício de material. No máximo, quantos centímetros quadrados de área terá o fundo do recipiente?
 ![Chapa de metal](image)

3. A lata a seguir, que tem forma de cilindro reto e não possui tampa, foi produzida a partir de uma chapa de metal. Quantos gramas de metal há em 1 cm² dessa chapa?
 ![Lata](image)
4 Calcule o volume de cada cilindro reto.
 a)
 ![Diagrama do cilindro reto com medidas 8m x 2m]
 b)
 ![Diagrama do cilindro reto com medidas 5m x 3m]

5 (UFC-CE) Em um contêiner de 10 m de comprimento, 8 m de largura e 6 m de altura, podemos facilmente empilhar 12 cilindros de 1 m de raio e 10 m de altura cada, bastando dispô-los horizontalmente, em três camadas de quatro cilindros cada. Porém, ao fazê-lo, um certo volume do contêiner sobrará como espaço vazio. Adotando 3,14 como aproximação para \(\pi \), é correto afirmar que a capacidade volumétrica desse espaço vazio é:
 a) () inferior à capacidade de um cilindro.
 b) () maior que a capacidade de um cilindro, mas menor que a capacidade de dois cilindros.
 c) () maior que a capacidade de dois cilindros, mas menor que a capacidade de três cilindros.
 d) () maior que a capacidade de três cilindros, mas menor que a capacidade de quatro cilindros.
 e) () maior que a capacidade de quatro cilindros.

6 Uma piscina cilíndrica, com 80 cm de altura e 3 m de diâmetro da base, está sendo abastecida com água à vazão constante de 40 L por minuto.
Considerando o momento em que o nível da água tem 64 cm de altura, responda.
 Considere \(\pi = 3 \).
 a) Há quanto tempo a piscina está sendo abastecida? ___________________________
 b) Daqui a quanto tempo a piscina estará totalmente cheia? _______________________

7 (FGV-RJ) Uma empresa usa dois tipos de embalagem para seus produtos. Ambas têm formato de cilindro circular reto. O raio da base da embalagem I tem 5 cm e altura de 12 cm, e a embalagem II, raio da base de 4 cm e mesmo volume que a outra.
Para a confecção das paredes laterais e dos círculos das bases usa-se um mesmo material. A razão entre a quantidade de material que se usa na que gasta mais e a quantidade da que gasta menos é:
 a) () \(\frac{71}{65} \) b) () \(\frac{76}{70} \) c) () \(\frac{81}{75} \) d) () \(\frac{86}{80} \) e) () \(\frac{91}{85} \)
8 Em relação ao cone reto apresentado, calcule:

![Cone](image1)

a) a área da base __

b) a altura ___

c) a área da superfície lateral __________________________________

d) a área total da superfície __________________________________

9 Calcule a área total da superfície do cone obtido pela rotação do triângulo a seguir em torno do lado BC.

![Triângulo](image2)

10 Um círculo com 31,4 cm de perímetro é a base de um cone reto cuja área lateral é de 204,1 cm². Qual a altura desse cone? ________________________________

11 Resolva cada item:

a) Calcule o volume do cone reto.

![Cone](image3)

b) Calcule o volume do cone obtido pela rotação do triângulo retângulo a seguir em torno do maior
c) Calcule o volume do cone reto cuja planificação é dada abaixo.

12 Qual a medida da geratriz de um cone com 226,08 cm³ de volume cuja altura é igual à medida do raio da base?

13 (UFAL-AL) Um recipiente na forma de um cilindro reto, com raio da base 1 m e altura 5 m, está completamente cheio de água. A água é despejada em dois cones invertidos, ligados por um duto, de volume desprezível, como ilustrado a seguir.

Se os cones têm altura 6 m e raios das bases 4 m (o da esquerda) e 2 m (o da direita), como ilustrado na figura, calcule a altura da água nos cones.

a) () 2,9 m

b) () 3,0 m

c) () 3,1 m

d) () 3,2 m

e) () 3,3 m
14 Determine a área total da superfície do tronco de cone reto.

15 Considere um tronco de cone reto cuja área lateral é \(28\pi\sqrt{2}\) cm\(^2\), a geratriz mede \(2\sqrt{2}\) cm e a altura é igual à diferença entre o raio da base maior e o raio da base menor.
 a) Qual é a medida do raio da base maior? E da base menor?
 b) Calcule a área total da superfície desse tronco de cone.

16 A vasilha abaixo tem a forma de um tronco de cone reto e o material de que é feita tem 0,5 g por cm\(^2\) de área. Sabendo que essa vasilha tem 646,84 g de massa, qual a medida do diâmetro da sua abertura superior?

17 Determine o volume de cada tronco de cone reto.
 a)
 b)
18 O copo representado abaixo tem a forma de um tronco de cone reto e sua capacidade é de 464.72 mL. Quantos centímetros de altura tem esse copo?

19 (UEM-PR) Um funil de metal será construído para fins industriais. A parte superior do funil tem a forma de um tronco de cone circular reto e a inferior tem a forma de um cilindro circular reto, como mostra a figura A abaixo.

O tronco de cone tem raio da base maior \(R = 2 \text{ m} \), raio da base menor \(r = 1 \text{ m} \) e altura \(h_2 = 2 \text{ m} \). O cilindro tem altura \(h_2 = 2 \text{ m} \). Planificando-se a parte superior do funil, obtem-se uma folha de metal com a forma de um setor de coroa circular com ângulo central igual a \(\alpha \) radianos, de raio maior \(G \) (em metros) e tal que a diferença entre os raios maior e menor é igual a \(g \) (em metros), como ilustrado na figura B acima. Considerando o exposto, assinale o que for correto.

a) () O cone reto que, quando seccionado por um plano paralelo à sua base, produz o tronco de cone da parte superior do funil tem altura \(H = 6 \text{ m} \).

b) () A folha de metal, ilustrada na figura B, em forma de um setor de coroa circular tem raio maior \(G = 2\sqrt{10} \text{ m} \) e ângulo central \(\alpha = \frac{2\pi}{\sqrt{10}} \text{ radianos} \).

c) () A área da superfície da parte superior do funil é igual a 27 \(\text{ m}^2 \).

d) () A razão entre a capacidade volumétrica da parte superior do funil em relação à da parte inferior é igual a \(\frac{9}{2} \).

e) () A capacidade volumétrica do funil é \(9\pi \text{ m}^3 \).

20 Calcule a capacidade, em litros, de uma esfera cujo:

a) diâmetro mede 1 m

b) raio mede 1 m
21 (UFG-GO) Uma confeiteira produziu 30 trufas de formato esférico com 4 cm de diâmetro cada. Para finalizar, cada unidade será coberta com uma camada uniforme de chocolate derretido, passando a ter um volume de 16π cm3. Considerando-se que, com 100 g de chocolate, obtém-se 80 mL de chocolate derretido, que quantidade de chocolate, em gramas, será necessária para cobrir as 30 trufas?

a) () 608

b) () 618

c) () 628

d) () 638

e) () 648

Dado $\pi = 3,14$.

22 No quadrado ABCD a seguir, traçou-se um segmento de reta com extremos nos pontos médios dos lados AB e AD, e delimitou-se um semicírculo com diâmetro BC. Se o quadrado tem lados medindo x cm, então o volume do sólido obtido com a rotação da região hachurada em torno do lado BC é:

a) () $\frac{3\pi x^3}{5}$ cm3

b) () $\frac{5\pi x^3}{8}$ cm3

c) () $\frac{9\pi x^3}{16}$ cm3

d) () $\frac{4\pi x^3}{7}$ cm3

e) () $\frac{2\pi x^3}{3}$ cm3

23 Calcule a área da superfície de uma esfera cujo:

a) raio mede 6 cm

b) equador tem 78,5 dm de comprimento

c) círculo máximo tem 1256 m2 de área

d) volume é de 113,04 mm3
24 Um recipiente cilíndrico, cujo raio da base é de 25 cm, estava inicialmente cheio de água (figura 1). Uma esfera de vidro foi totalmente mergulhada dentro desse recipiente (figura 2), fazendo transbordar parte da água. Após a esfera ser cuidadosamente retirada, verificou-se que o nível da água no recipiente estava 7,2 cm mais baixo (figura 3). Qual o raio da esfera?

25 Considere, em uma esfera de raio r, o equador e dois meridianos perpendiculares entre si. Ao realizar cortes contendo essas circunferências, a esfera é dividida em oito partes idênticas. Escreva uma expressão, dada em função de r, que represente a área total da superfície do sólido obtido ao ser retirada uma dessas partes da esfera.

26 (UFG-GO) Pesquisadores da Universidade Federal do Rio de Janeiro vêm desenvolvendo uma técnica para multiplicar a produção de células-tronco, por meio de um biorreator, um enorme tubo de ensaio contendo uma cultura na qual um material biológico qualquer é produzido em larga escala (Folha de S. Paulo, 10 nov. 2008, p. A12. Adaptado). A grande descoberta da pesquisa é a adição de polímeros de açúcar à cultura, pois as células-tronco aderem à superfície desses polímeros, ampliando as possibilidades de produção.

Segundo a reportagem, cada polímero de açúcar é uma microesfera com 0,2 milímetros de diâmetro. Neste biorreator, as superfícies de todas as microesferas têm uma área total de, aproximadamente, 4,396 m².

Com base nesses dados, qual é a quantidade de polímeros de açúcar (microesferas) presentes no biorreator?
27 (ENEM-MEC) Uma garrafa cilíndrica está fechada, contendo um líquido que ocupa quase completamente seu corpo, conforme mostra a figura. Suponha que, para fazer medições, você disponha apenas de uma régua milimetrada. Para calcular o volume do líquido contido na garrafa, o número mínimo de medições a serem realizadas é:

a) () 1
 b) () 2
 c) () 3
 d) () 4
 e) () 5

28 (ENEM-MEC) Uma garrafa cilíndrica está fechada, contendo um líquido que ocupa quase completamente seu corpo, conforme mostra a figura. Suponha que, para fazer medições, você disponha apenas de uma régua milimetrada. Para calcular a capacidade total da garrafa, lembrando que você pode virá-la, o número mínimo de medições a serem realizadas é:

a) () 1
 b) () 2
 c) () 3
 d) () 4
 e) () 5

29 (ENEM-MEC) Assim como na relação entre o perfil de um corte de um torno e a peça torneada, sólidos de revolução resultam da rotação de figuras planas em torno de um eixo. Girando-se as figuras abaixo em torno da haste indicada obtêm-se os sólidos de revolução que estão na coluna da direita.

A correspondência correta entre as figuras planas e os sólidos de revolução obtidos é:

a) () 1A, 2B, 3C, 4D, 5E
 d) () 1D, 2E, 3A, 4B, 5C
b) () 1B, 2C, 3D, 4E, 5A
 e) () 1D, 2E, 3B, 4C, 5A
c) () 1B, 2D, 3E, 4A, 5C
30 (ENEM-MEC) Uma empresa de transporte armazena seu combustível em um reservatório cilíndrico enterrado horizontalmente. Seu conteúdo é medido com uma vara graduada em vinte intervalos, de modo que a distância entre duas graduações consecutivas representa sempre o mesmo volume.

A ilustração que melhor representa a distribuição das graduações na vara é:

a) ()
b) ()
c) ()
d) ()
e) ()

31 (ENEM-MEC) Em muitas regiões do estado do Amazonas, o volume de madeira de uma árvore cortada é avaliado de acordo com uma prática dessas regiões:

I) Dá-se uma volta completa em torno do tronco com um barbante.

II) O barbante é dobrado duas vezes pela ponta e, em seguida, seu comprimento é medido com fita métrica.

III) O valor obtido com essa medida é multiplicado por ele mesmo e depois multiplicado pelo comprimento do tronco. Esse é o volume estimado de madeira.

Outra estimativa pode ser obtida pelo cálculo formal do volume do tronco, considerando-o um cilíndro perfeito.

A diferença entre essas medidas é praticamente equivalente às perdas de madeira no processo de corte para comercialização.

Pode-se afirmar que essas perdas são da ordem de:

a) () 30%
b) () 22%
c) () 15%
d) () 12%
e) () 5%
(ENEM-MEC) Um fabricante de brinquedos recebeu o projeto de uma caixa que deverá conter cinco pequenos sólidos, colocados na caixa por uma abertura em sua tampa. A figura representa a planificação da caixa, com as medidas dadas em centímetros.

Os sólidos são fabricados nas formas de:
I) um cone reto de altura 1 cm e raio da base 1,5 cm.
II) um cubo de aresta 2 cm.
III) uma esfera de raio 1,5 cm.
IV) um paralelepípedo retangular reto, de dimensões 2 cm, 3 cm e 4 cm.
V) um cilindro reto de altura 3 cm e raio da base 1 cm.

O fabricante não aceitou o projeto, pois percebeu que, pela abertura dessa caixa, só poderia colocar os sólidos dos tipos:
a) () I, II e III b) () I, II e V c) () I, II, IV e V d) () II, III, IV e V e) () III, IV e V

(ENEM-MEC) As cidades de Quito e Cingapura encontram-se próximas à linha do Equador e em pontos diametralmente opostos no globo terrestre. Considerando o raio da Terra igual a 6370 km, pode-se afirmar que um avião saindo de Quito, voando em média 800 km/h, descontando as paradas de escala, chega a Cingapura em aproximadamente:
a) () 16 horas b) () 20 horas c) () 25 horas d) () 32 horas e) () 36 horas

(ENEM-MEC) Observe o que foi feito para colocar bolinhas de gude de 1 cm de diâmetro numa caixa cúbica com 10 cm de aresta.

Uma pessoa arrumou as bolinhas em camadas superpostas iguais, tendo assim empregado:
a) () 100 bolinhas d) () 2.000 bolinhas
b) () 300 bolinhas e) () 10.000 bolinhas
c) () 1.000 bolinhas
35 (ENEM-MEC) Os três recipientes da figura têm formas diferentes, mas a mesma altura e o mesmo diâmetro da boca. Neles são colocados líquido até a metade de sua altura, conforme indicado nas figuras.

Representando por V_1, V_2 e V_3 o volume de líquido em cada um dos recipientes, tem-se:

a) $V_1 = V_2 = V_3$

b) $V_1 < V_2 < V_3$

c) $V_1 = V_3 < V_2$

d) $V_3 < V_1 < V_2$

e) $V_1 < V_2 = V_3$

36 (ENEM-MEC) Uma artesã confecciona dois diferentes tipos de vela ornamental a partir de moldes feitos com cartões de papel retangular de 20 cm × 10 cm (conforme ilustram as figuras abaixo). Unindo dois lados opostos do cartão, de duas maneiras, a artesã forma cilindros e, em seguida, os preenche completamente com parafina.

Supondo-se que o custo da vela seja diretamente proporcional ao volume de parafina empregado, o custo da vela do tipo I, em relação ao custo da vela do tipo II, será:

a) () o triplo
b) () o dobro

c) () igual
d) () a metade
e) () a terça parte

37 (ENEM-MEC) A diversidade de formas geométricas espaciais criadas pelo homem, ao mesmo tempo em que traz benefícios, causa dificuldades em algumas situações. Suponha, por exemplo, que um cozinheiro precise utilizar exatamente 100 mL de azeite de uma lata que contenha 1200 mL e queira guardar o restante do azeite em duas garrafas, com capacidade para 500 mL e 800 mL cada, deixando cheia a garrafa maior. Considere que ele não disponha de instrumento de medida e decida resolver o problema utilizando apenas a lata e as duas garrafas. As etapas do procedimento utilizado por ele estão ilustradas nas figuras a seguir, tendo sido omitida a 5ª etapa.
Qual das situações ilustradas a seguir corresponde à 5ª etapa do procedimento?

a) ()

b) ()

c) ()

d) ()

e) ()

38 (ENEM-MEC) A figura ao lado mostra um reservatório de água na forma de um cilindro circular reto, com 6 m de altura. Quando está completamente cheio, o reservatório é suficiente para abastecer, por um dia, 900 casas cujo consumo médio diário é de 500 litros de água. Suponha que, um certo dia, após uma campanha de conscientização do uso da água, os moradores das 900 casas abastecidas por esse reservatório tenham feito economia de 10% no consumo de água. Nessa situação:

a) () a quantidade de água economizada foi de 4,5 m³.

b) () a altura do nível da água que sobrou no reservatório, no final do dia, foi igual a 60 cm.

c) () a quantidade de água economizada seria suficiente para abastecer, no máximo, 90 casas cujo consumo diário fosse de 450 litros.

d) () os moradores dessas casas economizariam mais de R$ 200,00, se o custo de 1 m³ de água para o consumidor fosse igual a R$ 2,50.

e) () um reservatório de mesma forma e altura, mas com raio da base 10% menor que o representado, teria água suficiente para abastecer todas as casas.

39 (ENEM-MEC) Alguns testes de preferência por bebedouros de água foram realizados com bovinos, envolvendo três tipos de bebedouros, de formatos e tamanhos diferentes. Os bebedouros 1 e 2 têm a forma de um tronco de cone circular reto, de altura igual a 60 cm, e diâmetro da base superior igual a 120 cm e 60 cm, respectivamente. O bebedouro 3 é um semicilindro, com 30 cm de altura, 100 cm de comprimento e 60 cm de largura. Os três recipientes estão ilustrados na figura.
Considerando que nenhum dos recipientes tenha tampa, qual das figuras a seguir representa uma planificação para o bebedouro 3?

a) ()

b) ()

c) ()

e) ()

d) ()

40 (ENEM-MEC) Dona Maria, diarista na casa da família Teixeira, precisa fazer café para servir as vinte pessoas que se encontram numa reunião na sala. Para fazer o café, Dona Maria dispõe de uma leiteira cilíndrica e copinhos plásticos, também cilíndricos.

Com o objetivo de não desperdiçar café, a diarista deseja colocar a quantidade mínima de água na leiteira para encher os vinte copinhos pela metade. Para que isso ocorra, Dona Maria deverá:

a) () encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo.

b) () encher a leiteira toda de água, pois ela tem um volume 20 vezes maior que o volume do copo.

c) () encher a leiteira toda de água, pois ela tem um volume 10 vezes maior que o volume do copo.

d) () encher duas leiteiras de água, pois ela tem um volume 10 vezes maior que o volume do copo.

e) () encher cinco leiteiras de água, pois ela tem um volume 10 vezes maior que o volume do copo.

41 (ENEM-MEC) Para construir uma manilha de esgoto, um cilindro com 2 m de diâmetro e 4 m de altura (de espessura desprezível), foi envolvido homogeneamente por uma camada de concreto, contendo 20 cm de espessura.

Supondo que cada metro cúbico de concreto custe R$ 10,00 e tomando 3,1 como valor aproximado de π, então o preço dessa manilha é igual a:

a) () R$ 230,40
b) () R$ 124,00
c) () R$ 104,16
d) () R$ 54,56
e) () R$ 49,80
42 (ENEM-MEC) No manejo sustentável de florestas, é preciso muitas vezes obter o volume da tora que pode ser obtida a partir de uma árvore. Para isso, existe um método prático, em que se mede a circunferência da árvore à altura do peito de um homem (1,30 m), conforme indicado na figura. A essa medida denomina-se "rodo" da árvore. O quadro a seguir indica a fórmula para se cubar, ou seja, obter o volume da tora em m³ a partir da medida do rodo e da altura da árvore.

O volume da tora em m³ é dado por

\[V = \text{rodo}^2 \times \text{altura} \times 0,06 \]

O rodo e a altura da árvore devem ser medidos em metros. O coeficiente 0,06 foi obtido experimentalmente.

Um técnico em manejo florestal recebeu uma missão de cubar, abater e transportar cinco toras de madeira, de duas espécies diferentes, sendo:

- 3 toras da espécie I, com 3 m de rodo, 12 m de comprimento e densidade 0,77 toneladas/m³;
- 2 toras da espécie II, com 4 m de rodo, 10 m de comprimento e densidade 0,78 toneladas/m³.

Após realizar seus cálculos, o técnico solicitou que envassem caminhões para transportar uma carga de, aproximadamente:

a) () 29,9 toneladas c) () 32,4 toneladas e) () 41,8 toneladas
b) () 31,1 toneladas d) () 35,3 toneladas

43 (ENEM-MEC) Uma empresa vende tanques de combustíveis de formato cilíndrico, em três tamanhos, com medidas indicadas nas figuras. O preço do tanque é diretamente proporcional à medida da área da superfície lateral do tanque. O dono de um posto de combustível deseja encomendar um tanque com menor custo por metro cúbico de capacidade de armazenamento.

Quais dos tanques deverá ser escolhido pelo dono do posto? (Considere \(\pi = 3 \))

a) () I, pela relação área/capacidade de armazenamento de \(\frac{1}{3} \).
b) () II, pela relação área/capacidade de armazenamento de \(\frac{4}{3} \).
c) () II, pela relação área/capacidade de armazenamento de \(\frac{3}{4} \).
d) () III, pela relação área/capacidade de armazenamento de \(\frac{2}{3} \).
e) () III, pela relação área/capacidade de armazenamento de \(\frac{7}{12} \).

44 (ENEM-MEC) Uma metalúrgica recebeu uma encomenda para fabricar, em grande quantidade, uma peça com o formato de um prisma reto com base triangular, cujas dimensões da base são 6 cm, 8 cm e 10 cm e cuja altura é 10 cm. Tal peça deve ser vazada de tal maneira que a perfuração na forma de um cilindro circular reto seja tangente às suas faces laterais, conforme mostra a figura.
O raio da perfuração da peça é igual a:

a) () 1 cm b) () 2 cm c) () 3 cm d) () 4 cm e) () 5 cm

45 (ENEM-MEC) A ideia de usar rolos circulares para deslocar objetos pesados provavelmente surgiu com os antigos egípcios ao construírem as pirâmides.

Representando por R o raio da base dos rolos cilíndricos, em metros, a expressão do deslocamento horizontal y do bloco de pedra em função de R, após o rolo ter dado uma volta completa sem deslizar, é:

a) () y=R b) () y=2R c) () y=πR d) () y=2πR e) () y=4πR

46 (ENEM-MEC) Em um casamento, os donos da festa serviam champanhe aos seus convidados em taças com formato de um hemisfério (Figura 1), porém um acidente na cozinha culminou na quebra de grande parte desses recipientes. Para substituir as taças quebradas, utilizou-se um outro tipo com formato de cone (Figura 2). No entanto, os noivos solicitaram que o volume de champanhe nos dois tipos de taças fosse igual.

Considere:

\[V_{\text{hemisfério}} = \frac{4}{3}\pi R^3 \quad \text{e} \quad V_{\text{cone}} = \frac{1}{3}\pi R^2 h \]

Sabendo que a taça com o formato de hemisfério é servida completamente cheia, a altura do volume de champanhe que deve ser colocado na outra taça, em centímetros, é de:

a) () 1,33 b) () 6,00 c) () 12,00 d) () 56,52 e) () 113,04